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Unconventional decay law for excited states in closed many-body systems
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We study the time evolution of an initially excited many-body state in a finite system of interacting Fermi
particles in the situation when the interaction gives rise to the ‘‘chaotic’’ structure of compound states. This
situation is generic for highly excited many-particle states in quantum systems such as heavy nuclei, complex
atoms, quantum dots, spin systems, and quantum computers. For a strong interaction the leading term for the
return probabilityW(t) has the formW(t).exp(2DE

2t2) with DE
2 as the variance of the strength function. The

conventional exponential linear dependenceW(t)5C exp(2Gt) formally arises for a very larger time. How-
ever, the prefactorC turns out to be exponentially large, thus resulting in a strong difference from the con-
ventional estimate forW(t).
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It is known that highly excited states can be treated
‘‘chaotic’’ ones in many-body systems, such as complex
oms @1#, multicharged ions@2#, nuclei @3# and spin systems
@4,5#, quantum computer models@6,7#. This happens due to
very high density of many-particle states that strongly
creases with an increase of energy. For example, in the
of n Fermi particles occupying the finite numberm of ‘‘or-
bitals’’ ~single-particle states!, the total numberN of many-
body states grows exponentially fast with an increase
number of particles,N5m!/n!(m2n)!;exp(c0n). Corre-
spondingly, the densityr f of those many-body states that a
directly coupled by a two-body interaction, also grows ve
fast. Therefore, even a relatively weak interaction betw
the particles can lead to a strong mixing between unp
turbed many-body states~‘‘basis states’’!. As a result, an ex-
act ~perturbed! eigenstate is represented by a chaotic sup
position of a large number of components of basis sta
@8,9#.

The number of principal basis components in suchchaotic
eigenstates can be estimated asNp;G/D, whereG is the
spreading widthof a typical component that can be estimat
using the Fermi golden rule, andD21(E) is the total density
of many-body states. In the case of a quantum computer
interval between multiqubit energy levelsD}1/N is ex-
tremely small, and practically it is impossible to resol
these levels. Moreover, both the temperature and finite t
of computer operations lead to an energy uncertaintydE
@D. A similar situation occurs for an electron that enters
many-electron quantum dot. In these cases the analys
stationary chaotic eigenstates is not an adequate to
physical problems and one needs to consider the time ev
tion of wave functions. In this paper we extend the quant
chaos approach to the problem of time evolution of an
tially excited basis state.

Exact many-body eigenstatesuk& of the Hamiltonian
H5H01V of interacting Fermi particles can be expressed
terms of simpleshell-model basis statesu f & of H0,
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uk&5(
f

Cf
(k)u f &; u f &5af 1

†
•••af n

† u0&. ~1!

Here u0& is the ground state,as
† is the creation operator, an

Cf
(k) are components of an exact eigenstate in the un

turbed basis.
In application to quantum computer models the Ham

tonianH0 describes a number of noninteractingqubits~two-
level systems!, and V stands for the interqubit interactio
needed for a quantum computation~we assume time-
independentV). In this case the basis stateu f & is a product of
single-qubit states,as

† is the spin-raising operator~if the
ground stateu0& corresponds to spins down!, and chaotic
eigenstatesuk& are formed by the residual interactionV.

Below we consider the time evolution of the system, a
suming that initially (t50) the system is in a specific bas
stateu i & ~in the state with certain spins ‘‘up’’ for a quantum
computer!. This state can be expressed as a sum over e
eigenstates,

u i &5(
k

Ci
(k)uk&, ~2!

therefore, the time-dependent wave function reads as

C~ t !5(
k, f

Ci
(k)Cf

(k)u f &exp~2 iE (k)t !. ~3!

Here E(k) are the eigenvalues corresponding to the eig
statesuk&. The sum is taken over the eigenstatesuk& and basis
statesu f & ~in what follows, we put\51).

The probabilityWi5uAi u25 z^ i uC(t)& z2 to find the system
in the stateu i & is determined by the amplitude

Ai5^ i uexp~2 iHt !u i &5(
k

uCi
(k)u2 exp~2 iE (k)t !

.E Pi~E!exp~2 iEt !dE. ~4!
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Here we replaced the summation over a large numbe
eigenstates by the integration over their energiesE[E(k),
and introduced thestrength function~SF! Pi(E) which is
also known in the literature as thelocal spectral density of
states,

Pi~E![uCi
(k)u2r~E!. ~5!

Herer(E) is the density of states of the total HamiltonianH,
and the average is performed over a number of states
close energies.

In chaotic systems the strength functionPi(E) is known
to have the Breit-Wigner form for a relatively weak intera
tion, and is close to the Gaussian for a strong interac
@1,3#. Recently the following approximate general express
has been analytically found@10#:

Pi~E!5
1

2p

G i~E!

~Ei1d i2E!21G i~E!2/4
, ~6!

G i~E!.2puVi f u2r f~E!, ~7!

which is derived by making use of the approach describe
Ref. @11#. HereG i(E) is some function of the total energy,d i
is the correction to the unperturbed energy levelEi due to the
residual interactionVi f , andr f(E) is the density of the basi
statesu f & directly connected with a given stateu i & by the
matrix elementsVi f . The above result has been derived f
the so-called two-body random interaction~TBRI! model
@12# that describesn interacting Fermi-particles distribute
over m orbitals, with the assumption that two-body matr
elements are completely random.

It is shown @10# that for a large number of particles th
function G i(E) has the Gaussian form

G i~E!.2pDE
2 1

A2ps f
2

expS 2
~E2Ei2v i !

2

2s f
2 D . ~8!

Heres f
2 is the variance of the densityr f(E) ~which also has

the Gaussian form!, andEi1v i is the average energy of th
basis statesu f & directly connected with a given stateu i & ~if Ei
is at the center of the spectrum we havev i50). The width
DE of the SF is determined through the second mome
DE

25( f Þ iVi f
2 , which for the TBRI model is found to be@13#

DE
25

1

4
V0

2n~n21!~m2n!~m2n13!, ~9!

with V0
2 standing for the variance of the off-diagonal el

ments of a two-body interaction (DE
2 for a quantum compute

model is given in Ref.@7#!.
If the interaction is not very strong we haves f

2

;m2d0
2/3, where d0 is the average distance between t

single-particle energy levels~this estimate is valid fors f
@DE). Therefore, for m2n*n@1 we have G/DE
;V0n/d0. This estimate may be compared with the criteriu
of chaosV0r f

21;V0(m2n)n(n21)/d0;V0mn2/d0.1.
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In the case of a relatively small~but nonperturbative! in-
teraction ~when G i!DE!s f), the function G(E) is very
broad~i.e. it does not change significantly within the ener
intervals ;G and DE) and can be treated as a consta
G(E).G0. In the case of a strong interaction,G0>DE , the
dependenceG(E) in Eq. ~6! is the leading one.

The knowledge of the strength function allows one to d
scribe the dynamics of wave packets in the energy space.
easy to find the evolution ofWi(t) on a small time scale. Le
us subtract the energyEi[Hii of the initial state in the ex-
ponent and make a second order expansion inE2Ei in Eq.
~4!. This leads to the following result:

Ai5exp~2 iEi t !~12DE
2 t2/2! ~10!

and

Wi~ t !512DE
2 t2. ~11!

For a strong residual interaction,G0>DE , the return
probabilty W(t) turns out to be a function ofDE

2 t2 for a
longer time@7#. Indeed, both the strength function and de
sity of states in this limit are described by the Gaussian fu
tions with the variances25DE

2 ~see details in Refs.@12–
15#!,

Pi~E!5
1

A2ps2
expF2

~E2Ec!
2

2s2 G , ~12!

r~E!5
N

A2ps2
expS 2

E2

2s2D . ~13!

HereEc is the center of the energy spectrum. Thus, Eq.~4!
results in the Gaussian time dependence forAi(t) andWi(t),

Ai5exp~2DE
2 t2/2!, ~14!

Wi~ t !.exp~2DE
2 t2!. ~15!

Now let us consider large times. In this limit the result c
be obtained by evaluation of the integral in Eq.~4! in the
complexE plane. Specifically, one should close the conto
of integration in the bottom part of the complex plan
(Im E,0), in order to provide a vanishing contribution
infinity. Then, the large time limit is given by the pole of th
strength function~6!, closest to the realE axis. If G i andd i in
Eq. ~5! do not depend onE, the integration gives the con
ventional exponential decayWi5exp(2Gt) @11#. However,
the energy dependence ofG is necessary to provide the fi
niteness of a second momentDE

2 of the strength function. If

G,DE , the closest pole is given byG̃522 ImEp , where
Ep is the solution of the equationEp5Ei1d i(Ep)
2 iG(Ep)/2 with a minimal imaginary part. IfG!DE , then
we haveG̃'G. As a result, we obtain an exponential depe
dence for larget,

Wi~ t !5C exp~2G̃t !, ~16!

with some constantC.
4-2
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It is important to describeWi(t) for arbitrary timet. Let
us start from simple qualitative arguments. The transit
between the Gaussian regime and simple exponential d
should occur near the timetc;G/DE

2 whereDE
2 tc

2;Gtc . This
gives the estimateC;exp(G2/2DE

2) for the constantC. In-
deed, fort,tc the quadratic exponential decay, exp(2DE

2t2),
is slower than the linear one, exp(2Gt). The matching of
these two dependencies would naturally require the ab
expression forC. Thus, the constantC can be large ifG
.DE . The transition from one regime of the time depe
dence ofWi(t) to another is schematically shown in Fig.

In Ref. @7# the simple extrapolation formula forWi(t) has
been suggested

Wi~ t !5expS G2

2DE
2

2A G4

4DE
4

1G2t2D , ~17!

which interpolates~for G,DE) between the small~11! and
large ~16! time dependencies.

These qualitative results are supported by a more deta
consideration. Equations~6!, ~7!, ~8!, and ~12! provide us
with an approximate formula for the strength function~tested
by numerical calculations@16#!

P~E!5B

expF2
~E2E0!2

2s2 G
~E2E0!21G2/4

, ~18!

which can be used, in conjunction with Eq.~4!, to study the
time dependenceWi(t). Strictly speaking, this formula is
valid near the center of the energy spectrum, otherwise
should take into account additional distortion effects.

Due to the normalization conditions,*P(E)dE51 and
*E2P(E)dE5DE

2 , we have the following relations@16#:

1

B
52F12FS G

sA8
D G p

G
expS G2

8s2D ~19!

and

FIG. 1. Schematic time dependenceW(t) for G̃50.5, DE51.2;
the dependenceW(t)5exp(2DE

2t2) changes intoW(t)5exp(2Gt)
at the pointtc5Gp /DE

2'0.17.
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DE
25BH sA2p2

pG

2
expS G2

8s2D F12FS G

sA8
D G J ,

~20!

whereF(z) is the error function.
The return probabilityW(t) corresponding to the strengt

function ~18! is then defined by the integral

A~ t !5BE
2`

`

dE

expS 2
E2

2s2
2 iEt D

~E2E0!21
G2

4

. ~21!

The time dependencies ofA(t) andW(t) for small time are
given by Eqs.~14! and ~15!. If G!s, the region of the ap-
plicability of these equations is very narrow. Indeed, in th
caseDE

2'sG/A2p and the conditiont!tc!G/DE
2;1/s re-

sults in the relationDE
2 t2!1. The absolute value of the am

plitude A(t) in this case is given by the series in the para
eter (st)25(t/tc)

2,

uA~ t !u512
1

2

Gs

A2p
t21

1

24

Gs3

A2p
t41•••. ~22!

For large time,t@tc51/s, the calculation of the integra
in Eq. ~20! leads to

W~ t !'expS 1

p

G2

DE
2

2Gt D
for the return probability. Here the correction (1
p)(G2/DE

2)'2G/sA2p is small. Indeed, the strength func
tion in this case is close to the Lorentzian that gives a sim
dependenceW(t)5exp(2Gt).

Another limit case of a large interaction,G@DE ~or, the
same,G@s), is more delicate. In this case the strength fun
tion is close to the Gaussian withDE's and tc is large,tc
;G/s2@1/s. The leading dependence ofW(t) in this case
is the Gaussian,W(t).exp(2DE

2 t 2). Only for a long time
t@G/s2 it becomes the simple exponential function

W~ t !'
p2G2

8DE
2

expS 1

4

G2

DE
2

2Gt D . ~23!

It is important to note that even for a large time the retu
probability W(t) has large correction facto

exp@ 1
4$G

2/(DE)2%#, in addition to the standard decay la
exp(2Gt).

Due to a finite number of particles, there are addition
important features in the dynamics of wave packets, nam
the damped oscillations and the break of the decay forWi(t)
@17#. The number of basis componentsu f & within the energy
shell uE02Ef u<min(G,s)[D is finite. Therefore, the deca
stops if Wi is close to the equilibrium value defined asW`

[Wi(t→`)'3Npc
21 . Here Npc is the number of principal

components in an eigenstate,Npc;D/D , whereD5r21 is
4-3
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the mean energy interval between all many-body levels. N
that the value ofW` is still at least three times larger tha
Wf5Npc

21 for any other componentf, Wi(`)>Wf(`) ~see,
details in Ref.@17#!.

The equilibrium occurs because the average decay flu
equal to the average return flux. However, the return fl
also leads to the damped oscillations ofWi(t) and to the
oscillations of a current number of the principal compone
Npc(t). These oscillations arise because the decay flux ‘
flects’’ from the edges of the energy shell when all comp
nents within this shell are populated. Period of these osc
tions is aboutnc /D whereD is the inverse decay time, an
nc is the number of ‘‘classes’’ in the Hilbert space. Th
number can be defined as the number of interaction step
the perturbative chainH0a1

Ha1a2
•••Hakanc

needed to popu-

late all basis states within the energy shell. For example
the TBRI model with 6 particles and 12 orbitals, the numb
of steps isnc'3 since each two-body interactionHik moves
two particles to new orbitals.

In conclusion, we have studied generic features of
return probabilityW(t) for a system to be found in an ini
tially excited many-body state. Due to a two-body interact
between Fermi particles, the wave packet in the energy
resentation spreads over all basis states within the en
-

J.
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,
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shell. The dependenceW(t) for small time is determined by
a ballistic spread of the packet and is given by the expres
~11!. For large time, the decrease ofW(t) is determined by
the form of the strength functionP(E). We have analyzed
the behavior ofW(t) by making use of the analytical expre
sion for P(E), which is obtained for any strength of rando
two-body interaction between finite number of interacti
Fermi particles.

We have shown that for the Breit-Wigner form ofP(E)
~relatively weak interaction! the decay ofW(t) on a large
time scale has the conventional exponential depende
W(t).exp(2Gt). On the other hand, for the Gaussian for
of P(E) ~strong interaction! the time dependenceW(t) turns
out to be of very specific. Namely, the leading term gives
quadratic exponential dependence,W(t);exp(2DE

2t2), and
only for a very large time the conventional exponential line
dependence formally recovers. However, in this case an
ditional prefactorC appears before the exponent, which tur
out to be an exponentially large, thus resulting in a stro
mortification of the standard exponential estimate forW(t).
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